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Statistics of a confined, randomly accelerated particle with inelastic boundary collisions

Theodore W. Burkhardt, Jerrold Franklin, and Richard R. Gawronski
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122

~Received 30 September 1999; revised manuscript received 30 November 1999!

We consider the one-dimensional motion of a particle randomly accelerated by Gaussian white noise on the
line segment 0,x,1. The reflections of the particle from the boundaries atx50,1 are inelastic. The velocities
just before and after reflection are related byv f52rv i , wherer is the coefficient of restitution. Cornell, Swift,
and Bray@Phys. Rev. Lett.81, 1142 ~1998!# have argued that there is an inelastic collapse transition in this
system. Forr .r c5e2p/A3 the particle moves throughout the interval 0,x,1, while for r ,r c the particle is
localized atx50 or x51. In this paper the equilibrium distribution functionP(x,v) is analyzed forr .r c by
solving the steady-state Fokker-Planck equation, and the results are compared with numerical simulations.

PACS number~s!: 05.10.Gg, 02.50.Ey, 05.40.2a
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I. INTRODUCTION

Consider a particle moving in one dimension on the se
infinite line x.0 according to the Langevin equation

d2x

dt2
5h~ t !. ~1!

The accelerationh(t) has the form of Gaussian white nois
with mean ^h(t)&50 and correlation function
^h(t1)h(t2)&52d(t12t2). The collisions of the particle
with the boundary atx50 are inelastic. The velocitiesv i and
v f just before and after the collision are related byv f
52rv i , wherer is the coefficient of restitution.

This model, which may be relevant to clustering in driv
granular matter and the Brownian motion of colloids, h
recently been studied by Cornell, Swift, and Bray@1,2#.
Their most striking conclusion is that the system exhib
‘‘inelastic collapse.’’ Forr less than a critical value

r c5e2p/A350.1630 . . . ~2!

the inelastic particle in the half spacex.0 makes infinitely
many boundary collisions in a finite time and becomes loc
ized atx50. Cornellet al. argue that a particle confined t
the finite interval 0,x,1 undergoes a similar transition.
moves throughout the interval forr .r c and is localized at
x50 or 1 for r ,r c , with the same valuer c as for the half
space.

In this paper we consider the equilibrium statistical pro
erties of the randomly accelerated inelastic particle on
interval 0,x,1. The equilibrium distribution function
P(x,v) for the position and velocity of the particle satisfi
the steady-state Fokker-Planck equation@1#

S v
]

]x
2

]2

]v2D P~x,v !50 ~3!

corresponding to Eq.~1! with the boundary conditions

P~x,v !5P~12x,2v !, ~4!

P~0,2v !5r 2P~0,rv !, v.0, ~5!
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implied by reflection symmetry and conservation of pro
ability @3#, respectively. In Sec. II we show how to solv
Eqs.~3!–~5! for r .r c with a Green’s function appoach. Bot
analytical and numerical results forP(x,v) are presented
Some of these results are compared with simulations in S
III. Section IV contains concluding remarks.

II. SOLUTION OF THE FOKKER-PLANCK EQUATION

Our analytical approach to calculatingP(x,v) was in-
spired by Masoliver and Porra` @4#, who solved a related
Fokker-Planck equation in deriving the mean escape time
a randomly accelerated particle from the interval 0,x,1.
The central ingredient in our work is a Green’s function s
lution of Eq. ~3!,

P~x,v !5
v1/2

3x E0

`

du u3/2e2(v31u3)/9xI 21/3S 2v3/2u3/2

9x D P~0,u!

2
1

31/3G~ 2
3 !
E

0

x

dy
e2v3/9(x2y)

~x2y!2/3

]P~y,0!

]v
~6!

that determinesP(x,v) for all x.0, v.0 from the bound-
ary valuesP(0,v) and ]P(x,0)/]v. The quantityI n(z) in
Eq. ~6! is the usual modified Bessel function@5,6#. We em-
phasize that Eq.~6! only holds for positivev. P(x,v) for
negativev can be obtained from Eq.~6! using reflection
symmetry~4!.

A detailed derivation of Eq.~6! is given in Appendix A.
By substituting Eq.~6! into Eq.~3!, it is simple to check that
the differential equation is indeed satisfied. Equation~6! is
also consistent on the linesx50 andv50. In the limit x
→0 both the right-hand and left-hand sides approa
P(0,v), as follows from the asymptotic formI n(z)
'(2pz)21ez for largez. On differentiating Eq.~6! with re-
spect tov and then taking the limitv→0, both the right and
left sides approach]P(x,0)/]v.

There are two unknown functionsP(0,v) and]P(x,0)/]v
on the right-hand side of Eq.~6!. Imposing the requiremen
~4! of reflection symmetry on the solution~6!, we show in
Appendix B that the the second unknown function is rela
to the first by
2376 ©2000 The American Physical Society
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]P~x,0!

]v
5E

0

`

du u@R~x,u!2R~12x,u!#P~0,u!, ~7!

where

R~x,u!5
1

35/6G~ 1
3 !G~ 5

6 !

u1/2e2u3/9x

x7/6~12x!1/6

3 1F1S 2
1

6
,
5

6
,
u3~12x!

9x D , ~8!

and 1F1(a,b,z) is the confluent hypergeometric functio
@5–7#. Equations~6!–~8!, which still involve one unknown
function P(0,v), formally solve the Fokker-Planck equatio
for any boundary condition~see, for example, Ref.@8#! at x
50,1 consistent with the reflection symmetry~4!.

Imposing the inelastic boundary condition~5! on the so-
lution ~6! yields an integral equation that determinesP(0,v)
for the randomly accelerated inelastic particle. From Eqs.~4!
and ~5!, r 2P(0,rv)5P(1,v) for v.0. Rewriting the right-
hand side of this relation using Eq.~6!, we obtain

r 2P~0,rv !5
v1/2

3 E
0

`

du u3/2e2(v31u3)/9

3I 21/3~
2
9 v3/2u3/2!P~0,u!

1
1

31/3G~ 2
3 !
E

0

1

dy y22/3e2v3/9y
]P~y,0!

]v
.

~9!

Here the integration variable in the second integral has b
changed fromy to 12y, using

]P~y,0!

]v
52

]P~12y,0!

]v
, ~10!

which follows from Eq.~4!.
Next we eliminate]P(y,0)/]v from Eq. ~9! using Eqs.

~7!,~8! and integrate overy with the help of@6#. This yields
an integral equation for the function

g~z!5v21/2P~0,v !, z5v3/9 ~11!

given by

g~r 3z!5
1

2pr 5/2E0

`

dz8e2(z1z8)

3F 1

z1z8
16 1F2~1; 5

6 , 7
6 ;zz8!Gg~z8!, ~12!

where 1F2(a;b,c;z) is a generalized hypergeometric fun
tion @6,7#. The key step in calculatingP(x,v) is solving in-
tegral equation~12! for g(z). Once g(z) has been deter
mined, P(0,v) follows from Eq. ~11! and P(x,v) from the
integrals in Eqs.~6!–~8!.

In the caser 51 of elastic boundary collisions, Eq.~12!
has the solution g(z)5const3z21/6, implying P(0,v)
5const and, from Eqs.~6!–~8!, P(x,v)5const. ThisP(x,v)
clearly satisfies the Fokker-Planck equation~3! with bound-
ary conditions~4! and~5!. SinceP(x,v) is independent ofv,
the equilibrium average of the kinetic energy is infinite. A
en

cording to the Langevin equation~1!, the mean kinetic en-
ergy at timet is given, forr 51, by

1
2 ^v~ t !2&5 1

2 v~0!21t, r 51, ~13!

which also diverges in the limitt→`.
The asymptotic behavior ofP(0,v) for small and largev

is determined by the first and second terms, respectively
the kernel in integral equation~12!. For smallv the first term
is dominant, and we find

P~0,v !;v2b(r ), 0,v!1, ~14!

where the exponentb(r ) depends onr according to

r 5H 2 sinF ~2b11!
p

6 G J 1/(b22)

. ~15!

For largev the second term of the kernel is dominant. Ma

ing use of 1F2(1; 5
6 , 7

6 ;z)' 1
6 p1/2z21/4exp(2z1/2) for large

positivez, we find

P~0,v !; exp@2v3/vch~r !3#, v@1, ~16!

where the characteristic velocityvch(r ) is given by

vch~r !35
9r 3

12r 3
. ~17!

As r decreases, the boundary collisions become more
elastic. The probability of finding the particle near th
boundary with a small velocity increases. This is reflected
the monotonic increase ofb(r ) with decreasingr and the
monotonic decrease ofvch(r ), apparent from Eqs.~15!,~17!.
As r decreases from 1 to 0,b(r ) increases from 0 to52 . The
integral equation~12! for P(0,v) has a well defined solution
for 0<b, 5

2 . However, forb greater than the critical value
bc52, the two integrals in Eq.~6! diverge. Thus our solu-
tion to the Fokker-Planck equation breaks down forb.bc
or r ,r c . From Eq.~15! one sees thatbc52 corresponds to
the critical valuer c5e2p/A3. This is the same as the critica
value ~2! for the inelastic collapse transition found by Co
nell, Swift, and Bray@1#

To solve integral equation~12! for g(z), we remove the
leading singularity atz50 by introducing the function

f ~z!5zaezg~r 3z!, a5
1

6
~2b11!. ~18!

The corresponding integral equation forf (z) can then be
written as

f ~z!511
r 1/2

2pE0

`

dz8z82ae2(11r 3)z8

3@K~z,z8!2K~1,z8!# f ~z8!, ~19!

with the kernel

K~z,z8!5zaF 1

z1r 3z8
16 1F2~1; 5

6 , 7
6 ;r 3zz8!G . ~20!
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Here f (z) has been normalized so thatf (1)51 by introduc-
ing a subtracted kernel. This permits solution by iterati
which would not work for the original homogeneous integ
equation. The boundary velocity distributionP(0,v), ob-
tained from the numerical solution of integral equation~19!
and Eqs.~11! and~18!, is compared with results from simu
lations in the next section.

Once P(0,v) is known, P(x,v) follows, for positivev,
from integration according to Eqs.~6!–~8! and, for negative
v, from reflection symmetry~4!. For r c,r ,1, P(x,v) is a
nonsingular function of (x,v) except at the two boundar
points (0,0) and (1,0). On approaching these points at c
stantx50 or 1, P(x,v) diverges asAuvu2b(r ), as in Eqs.
~14!,~15!, with different amplitudesA for positive and nega-
tive v, consistent with the inelastic boundary condition~5!.
On approaching the singular points at constantv50, P(x,v)
diverges asx2b(r )/3 for x→0 and as (12x)2b(r )/3 for x
→1, as follows from Eqs.~6!–~8!.

Carrying out the integrals in Eqs.~6!–~8! numerically for
r 5 1

2 , we obtain the functionP(x,v) shown in Fig. 1. The
divergence atv50 and the asymmetry betweenv and2v,
due to the asymmetric inelastic boundary condition~5!, are
apparent on the curve forx50 in Fig. 1. On the curves fo
x50.1, 0.3, and 0.5 the divergence is replaced by a roun
peak. The peak becomes broader and more symmetricx
increases. The asymmetry disappears atx50.5, as required
by reflection symmetry~4!.

The solid curve forP(0,v), v,0 in Fig. 1 was obtained
from our numerical solution of the integral equation~12! for
P(0,v), v.0 by integrating Eqs.~6!–~8! numerically to ob-
tain P(1,v), v.0 and then using reflection symmetry~4!.

FIG. 1. The functionP(x,v) ~solid lines! for r 5
1
2 obtained by

solving the integral equation~12! for P(0,v), v.0 and integrating
Eqs. ~6!–~8! numerically, making use of reflection symmetry~4!.
As discussed in the text, the points shown by empty circles con
that the numerical results forP(x,v) do indeed satisfy the inelasti
boundary condition~5!.
,
l

n-

ed
s

The functionsP(0,v) for v,0 and v.0 are also directly
related by the inelastic boundary condition~5!. The points
for P(0,v), v,0 denoted by empty circles in Fig. 1 wer
obtained by substituting the points forP(0,v), v.0 shown
in the figure into Eq.~5!. That the points forP(0,v), v,0
obtained this way lie right on the corresponding solid cur
as they should, serves as an important check of our num
cal work.

As r decreases,P(x,v) becomes more strongly peake
around the most probable values (x,v)5(0,0),(1,0), where
P(x,v) diverges. According to our numerical results f
P(x,v), the probability of finding the particle at a distanc
less than 0.1 from the boundary, independent of its veloc
increases from about 32% forr 50.8 to 84% forr 50.2.

III. COMPUTER SIMULATIONS

We have also carried out computer simulations of a r
domly accelerated particle making inelastic boundary co
sions. The particle moves on the line 0,x,1 and receives
random kicks at timest50,t,2t,3t, . . . , resulting in dis-
continuous velocity changes. Between two consecutive ki
the particle moves with constant velocity except when
strikes the boundary. In this case it is reflected, with its
locity multiplied by 2r . A sample trajectory is shown in
Fig. 2. Denoting the position of the particle as thekth kick is
applied byxk and the velocityjust beforethekth kick by vk ,
we write the corresponding equation of motion as

vk5vk211jk21 , ~21!

xk5xk211vkt, ~22!

if the particle does not strike the boundary between kickk
21 andk, i.e., if 0,xk211vkt,1. Otherwise these equa
tions are replaced by

vk52r ~vk211jk21!, ~23!

xk5H 2rxk211vkt, xk211vkt,0,

~11r !2rxk211vkt, xk211vkt.1. ~24!

The velocity changejk is selected randomly from a Gaussia
distribution, with ^jkjk8&52tdk,k8 . For this distribution

m

FIG. 2. Schematic trajectory of the simulated particle. The p
ticle travels with constant velocity between kicks, except when
strikes the boundary and is reflected inelastically. Our simulati
were performed with gentle kicks to approximate the continuo
dynamics, and the corresponding trajectories are much smoo
than shown.
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1
2 ^vk

2&5 1
2 v0

21kt for r 51, analogous to Eq.~13!. Note that
the root-mean-square velocity change is given byDv rms

5^jk
2&1/25(2t)1/2.

The difference equations~21!–~24! provide a good ap-
proximation to the differential equation~1! when the relative
velocity change per kick is small, i.e., forDv rms!uvu. The
simulations described below were performed withDv rms
5(2t)1/250.004 ort5831026.

Assuming the equivalence of ensemble averages
long-time averages for a single system, one may estim
P(x,v) and P(0,v) from a single simulation with a large
number of stepsN using the relations

P~x,v !5
1

NtE0

Nt

dt d„x2x~ t !…d„v2v~ t !…, ~25!

P~0,v !5 lim
D→0

1

DE0

D

dx P~x,v !

5 lim
D→0

1

NtDE0

Nt

dt u„D2x~ t !…d„v2v~ t !…, ~26!

whereu denotes the standard step function. The distribut
function P(x,v) in Eq. ~25! is normalized so that

E
0

1

dxE
2`

`

dv P~x,v !51. ~27!

Referring to Fig. 2, consider the contribution of the zigz
trajectory fromxk22 to xk11 to P(0,v) in Eq. ~26!. Only the
middle interval, which contains a boundary collision, give
nonvanishing contribution, (Nt)21uvu21@d(v1r 21vk)
1d(v2vk)#, in the limit D→0. Note that this contribution
explicitly satisfies the inelastic boundary condition~5!.

In our simulationsP(0,v) was determined by iterating th
difference equationsN5109 times and summing the contr
butions ~see the preceding paragraph! of all the boundary
collisions. In practice, this involves sorting all the velociti
vk just after boundary collisions in binsa51,2, . . . ofwidth
Dv and calculating the numberNa , averagê v&a , and av-
erage inversêv21&a of the velocities in bina. The data
points in Fig. 3 show the contributionsPa ,^v&a of the vari-
ous bins, where

Pa5
Na^v21&a

NtDv
. ~28!

HerePa in Eq. ~28! is normalized consistently withP(x,v)
in Eq. ~27!.

The results of our simulations are shown in Fig. 3 forr
50.2 ~filled circles! and r 50.8 ~empty circles!. The error
bars are comparable to the size of the points, except for
highest and lowest velocities, where the error bars are a
twice as large. The solid and dashed curves in Fig. 3 sh
the functionP(0,v) for r 50.2 andr 50.8 obtained by solv-
ing integral equation~12! numerically, as discussed follow
ing Eq. ~20!. The normalization of the curves, which is n
fixed by the integral equation, has been chosen so that
data points and curves coincide at ln(v/vch)521. The faint
straight lines show the power law~14!,~15! for small v.
nd
te

n

he
ut
w

he

The simulation data and the Fokker-Planck results
P(0,v) in Fig. 3 are in excellent agreement. Note that t
data extend over nearly six decades in the natural variablv3

of Eq. ~16!.

IV. CONCLUDING REMARKS

We have shown how the Fokker-Planck equation for
equilibrium distributionP(x,v) can be solved with a Green’
function approach. To obtainP(x,v), we first solve the in-
tegral equation~12! for P(0,v) and then substitute the resu
in Eqs. ~6!–~8!. A graph of P(x,v) for r 5 1

2 , calculated in
this way, is shown in Fig. 1.

As discussed following Eq.~17!, the Green’s function so-
lution exists for r .r c but not for r ,r c , where r c is the
same as the critical value~2! for the inelastic-collapse tran
sition reported by Cornellet al. @1,2#. For r c,r ,1 the most
probable values of (x,v) are (0,0) and (1,0), whereP(x,v)
is infinite. Asr approachesr c from above, the exponentb(r )
in the asymptotic form~14!,~15! of P(0,v) for small v ap-
proaches 2 from below, and the first and second terms on
right-hand side of Eq.~6!, which with Eqs.~7!,~8! determine
P(x,v), diverge positively and negatively, respectivel
However, the divergences cancel, andP(x,v) remains nor-
malizable and extended, as opposed to a collapsed d
function distribution, atr 5r c .

Finally we consider the critical behavior of the incide
and reflected probability currents

I inc5E
2`

0

dv vP~0,v !, I ref5E
0

`

dv vP~0,v !. ~29!

Note that these definitions and the inelastic boundary co
tion ~5! imply total currentI inc1I ref50, as required for any
time-independent distribution. The reflected current is
actly the same as the boundary collision rate. Substituting
small-v behavior ~14!,~15! of P(0,v) in Eqs. ~29! with
b(r )→2 asr→r c and using the normalizability ofP(x,v) at

FIG. 3. The boundary probability distributionP(0,v) for r
50.2 ~solid line! and r 50.8 ~dashed line! obtained by solving the
integral equation~12! numerically. Simulation results forr 50.2
~filled circles! and r 50.8 ~empty circles!. The error bars are com
parable to the sizes of the circles, except for the highest and low
velocities, where the error bars are about twice as large. The c
acteristic velocityvch(r ) is defined in Eq.~17!.
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r c , we find that the equilibrium boundary collision rate d
verges as (r 2r c)

21 as r approachesr c from above. Atr
5r c the particle makes an infinite number of collisions w
the boundary in a finite time. In their work on inelastic co
lapse, Cornellet al. @1,2# reached a similar conclusion forr
,r c .
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APPENDIX A: DERIVATION OF EQ. „6…

We begin by extending the finite interval 0,x,1 to the
half line 0,x,` and introducing the Laplace transform

Q~s,v !5E
0

`

dx e2sxP~x,v !, ~A1!

which according to Eq.~3! satisfies

S sv2
]2

]v2DQ~s,v !5vP~0,v !. ~A2!

This differential equation can be solved in terms of stand
Airy functions Ai(z),Bi(z), @5#, with Wronskian
Ai(z)Bi 8(z)2Ai 8(z)Bi(z)5p21. The solution for positivev
that vanishes asv→` is given by

Q~s,v !5W~s!Ai ~s1/3v !

1ps21/3FBi~s1/3v !E
v

`

du Ai ~s1/3u!uP~0,u!

1Ai ~s1/3v !E
0

v
du Bi~s1/3u!uP~0,u!G . ~A3!

The quantityW(s) in Eq. ~A3! is an arbitrary weight
function. It can be expressed in terms of]Q(s,0)/]v by
differentiating Eq.~A3! with respect tov and then setting
v50. Substituting the resulting expression forW(s) in Eq.
~A3! yields

Q~s,v !5s21/3
Ai ~s1/3v !

Ai 8~0! F ]Q~s,0!

]v
2pBi8~0!

3E
0

`

du Ai ~s1/3u!uP~0,u!G
1ps21/3FBi~s1/3v !E

v

`

du Ai ~s1/3u!uP~0,u!

1Ai ~s1/3v !E
0

v
du Bi~s1/3u!uP~0,u!G . ~A4!

Next we evaluate the inverse Laplace transform of E
~A4!, using L 21$Q(s,v)%5P(x,v), the Faltung theorem
@9#, and the relations
-

d

.

Ai 8~0!52321/2Bi8~0!52321/3G~ 1
3 !21,

L 21$s21/3Ai ~s1/3v !%5~2331/6p!21x22/3e2v3/9x,
~A5!

L 21$s21/3Ai ~s1/3v !Ai ~s1/3u!%

5~2333/2p!21x21~vu!1/2e2(v31u3)/9x

3F I 21/3S 2~vu!3/2

9x D2I 1/3S 2~vu!3/2

9x D G , ~A6!

L 21$s21/3Ai ~s1/3v !Bi~s1/3u!%

5~6p!21x21~vu!1/2e2(v31u3)/9x

3F I 21/3S 2~vu!3/2

9x D1I 1/3S 2~vu!3/2

9x D G . ~A7!

Equations~A5!–~A7! follow from the substitutions@5#

Ai ~z!5
z1/2

3 F I 21/3S 2

3
z3/2D2I 1/3S 2

3
z3/2D G , ~A8!

Bi~z!5S z

3D 1/2F I 21/3S 2

3
z3/2D1I 1/3S 2

3
z3/2D G , ~A9!

on the left-hand sides of Eqs.~A5!–~A7! and Ref.@10#. The
inverse Laplace transform of Eq.~A4! is the Green’s func-
tion solution~6! that we set out to prove.

APPENDIX B: DERIVATION OF EQS. „7… AND „8…

In the limit v→0 Eq. ~6! reduces to

P~x,0!5
1

31/3G~ 2
3 !

Fx22/3E
0

`

du ue2u3/9x P~0,u!

2E
0

x dy

~x2y!2/3

]P~y,0!

]v G , ~B1!

where the formI n(x)'G(n11)21(z/2)n for small z has
been used. From reflection symmetry~4!, P(x,0)2P(1
2x,0)50. Substituting Eq.~B1! in this relation and using
Eq. ~10!, we obtain

E
0

1 dy

ux2yu2/3

]P~y,0!

]v

5E
0

`

du uFe2u3/9x

x2/3
2

e2u3/9(12x)

~12x!2/3 GP~0,u!. ~B2!

To solve integral equation~B2! for the unknown function
on the left-hand side, it is useful to consider the related
tegral equation

E
0

1

dy
R~y,u!

ux2yu2/3
5F~x,u!. ~B3!
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Making the replacementsx→12x and y→12y, one sees
that any solution of Eq.~B3! also satisfies

E
0

1

dy
R~y,u!2R~12y,u!

ux2yu2/3
5F~x,u!2F~12x,u!

~B4!

Comparing Eqs.~B2! and ~B4!, recalling Eq. ~10!, and
choosing

F~x,u!5x22/3e2u3/9x, ~B5!

we see that~B2! has the solution~7! in terms ofR(x,u).
Integral equation~B3! can be solved by factoring the ke
n
th

-
i

,

nel into two Volterra adjoint operators and has the solut
@4,11#

R~x,u!52321/2GS 1

3D 21

GS 5

6D 22

x21/6
d

dx

3E
x

1

dy
y1/3

~y2x!1/6

d

dyE0

y

dz
F~z,u!

z1/6~y2z!1/6
.

~B6!

Substituting Eq.~B5! into ~B6! and evaluating the integral
with the help of@6#, we obtain Eq.~8! for R(x,u).
me

of
nd

s

@1# S.J. Cornell, M.R. Swift, and A.J. Bray, Phys. Rev. Lett.81,
1142 ~1998!.

@2# M.R. Swift and A.J. Bray, Phys. Rev. E59, R4721~1999!.
@3# At x50 the incident probability current with velocity betwee

v i and v i1dv i equals the reflected probability current wi
velocity between v f and v f1dv f . Thus P(0,v i)v idv i

5P(0,v f)v fdv f , which, together withv f52rv i , implies Eq.
~5!.

@4# J. Masoliver and J.M. Porra`, Phys. Rev. Lett.75, 189 ~1995!;
Phys. Rev. E53, 2243~1996!. The free energy of a semiflex
ible polymer in a tube is calulated with a related approach
T.W. Burkhardt, J. Phys. A30, L167 ~1997!.

@5# Handbook of Mathematical Functions, edited by M.
Abramowitz and I.A. Stegun~Dover, New York, 1965!.

@6# I.S. Gradshteyn and I.M. Ryzhik,Tables of Integrals, Series
and Products~Academic, New York, 1980!.
n

@7# We use the standard notationpFq(a1 , . . . ,ap ;b1 , . . . ,bq ;z)
5(n50

` @(a1)n . . . (ap)n /(b1)n . . . (bq)nn! #zn, where (c)n

5G(c1n)/G(c), for hypergeometric functions@6#.
@8# Suppose that the particle is always reflected with the sa

velocities v0 at x50 and 2v0 at x51, independent of the
velocity just before striking the boundary. This is a variant
the half-space albedo problem solved by Cornell, Swift, a
Bray @1#. The exact equilibrium distributionP(x,v) on the
interval 0,x,1 is given by Eqs. ~6!–~8! with P(0,v)
5const3d(v2v0).

@9# P.M. Morse and H. Feshbach,Methods of Theoretical Physic
~McGraw-Hill, New York, 1953!.

@10# G.E. Roberts and H. Kaufman,Table of Laplace Transforms
~Saunders, Philadelphia, 1966!.

@11# D. Porter and D.S.G. Stirling,Integral Equations~Cambridge
University Press, Cambridge, 1990!.


