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Statistics of a confined, randomly accelerated particle with inelastic boundary collisions
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We consider the one-dimensional motion of a particle randomly accelerated by Gaussian white noise on the
line segment &cx<1. The reflections of the particle from the boundaries-aD,1 are inelastic. The velocities
just before and after reflection are relateduyy: —rv;, wherer is the coefficient of restitution. Cornell, Swift,
and Bray[Phys. Rev. Lett81, 1142(1998] have argued that there is an inelastic collapse transition in this
system. For>r.=e~ ™ the particle moves throughout the intervat®< 1, while forr<r, the particle is
localized atx=0 orx=1. In this paper the equilibrium distribution functié?(x,v) is analyzed for >r . by
solving the steady-state Fokker-Planck equation, and the results are compared with numerical simulations.

PACS numbds): 05.10.Gg, 02.50.Ey, 05.40a

[. INTRODUCTION implied by reflection symmetry and conservation of prob-
ability [3], respectively. In Sec. Il we show how to solve
Consider a particle moving in one dimension on the semiEgs.(3)—(5) for r>r . with a Green'’s function appoach. Both

infinite line x>0 according to the Langevin equation analytical and numerical results f&(x,v) are presented.
Some of these results are compared with simulations in Sec.
d?x Ill. Section IV contains concluding remarks.
ez = 7. (2)

. . . . II. SOLUTION OF THE FOKKER-PLANCK EQUATION
The acceleratiom(t) has the form of Gaussian white noise,

with  mean (7(t))=0 and correlation function Our analytical approach to calculatirg(x,v) was in-

{n(t) n(ty))=28(t;—t,). The collisions of the particle spired by Masoliver and Porrgd], who solved a related

with the boundary at=0 are inelastic. The velocitieg and  Fokker-Planck equation in deriving the mean escape time of

vs just before and after the collision are related by @ randomly accelerated particle from the interval0<1.

= —ruv;, wherer is the coefficient of restitution. The central ingredient in our work is a Green’s function so-
This model, which may be relevant to clustering in drivenlution of Eq. (3),

granular matter and the Brownian motion of colloids, has

recently been studied by Comell, Swift, and Brég;2]. 5 :ilz " U 1% 0%+ w0 203232

Their most striking conciusion is that the system exhibits P(*:0)= 3¢ o -13 T gy

“inelastic collapse.” Forr less than a critical value

)P(O,u)

J Y Py,0)
33 Jo " -y

re=e "3=0.16®... 2 (6)
the inelastic particle in the half spage-0 makes infinitely

many boundary collisions in a finite time and becomes localthat determine$(x,v) for all x>0, v>0 from the bound-
ized atx=0. Cornellet al. argue that a particle confined to ary valuesP(0p) and dP(x,0)/dv. The quantityl (z) in
the finite interval 6<x<1 undergoes a similar transition. It Eq. (6) is the usual modified Bessel functi¢h,6]. We em-
moves throughout the interval for>r. and is localized at phasize that Eq(6) only holds for positivev. P(x,v) for
x=0 or 1 forr<r., with the same value, as for the half negativev can be obtained from Eq6) using reflection
space. symmetry(4).

In this paper we consider the equilibrium statistical prop- A detailed derivation of Eq(6) is given in Appendix A.
erties of the randomly accelerated inelastic particle on thdy substituting Eq(6) into Eq.(3), it is simple to check that
interval 0<x<1. The equilibrium distribution function the differential equation is indeed satisfied. Equatiénis
P(x,v) for the position and velocity of the particle satisfies also consistent on the lines=0 andv=0. In the limit x
the steady-state Fokker-Planck equatith —0 both the right-hand and left-hand sides approach

P(Op), as follows from the asymptotic forml (z)

a P ~(2mz)~1e* for largez. On differentiating Eq(6) with re-
vox g2/ Pxw)=0 ) spect tov and then taking the limit — 0, both the right and
left sides approachP(x,0)/dv.
corresponding to Eq.1) with the boundary conditions There are two unknown functioi®0,v) anddP(x,0)/dv
on the right-hand side of E@6). Imposing the requirement
P(x,v)=P(1-x,—v), (4)  (4) of reflection symmetry on the solutioi®), we show in
Appendix B that the the second unknown function is related
P(0,—v)=r2P(0yrv), v>0, (5)  to the first by
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&P;:’O) :f:du U R(X,u)—R(1—x,u)]P(0u), (7)
where
1 ul/Ze—u3/9x
R(x,u)= 35/6F(%)1—~(%) X7/6(1_X)1/6
15 ud(1—x)
X qFq T8 ox I’ (8)

and ;F(a,b,z) is the confluent hypergeometric function
[5—7]. Equations(6)—(8), which still involve one unknown
function P(0p), formally solve the Fokker-Planck equation
for any boundary conditiofisee, for example, Ref8]) at x
=0,1 consistent with the reflection symmet#).

Imposing the inelastic boundary conditi@) on the so-
lution (6) yields an integral equation that determirf@®,v)
for the randomly accelerated inelastic particle. From Edjs.
and (5), r?P(0rv)=P(1v) for v>0. Rewriting the right-
hand side of this relation using E(), we obtain

12 o
r’P(0rv)= du 2% @)
0

3
X1 _y5v¥ 3 P(0u)

dP(y,0)

+ ;J’ldy y72/3efv3/9y
347 (3) Jo v

9
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cording to the Langevin equatiail), the mean kinetic en-
ergy at timet is given, forr=1, by

3 (v(H)H)=3v(0)%+t,

5 r=1, (13
which also diverges in the limit— oo.

The asymptotic behavior d?(0,v) for small and large
is determined by the first and second terms, respectively, of
the kernel in integral equatiof12). For smallv the first term

is dominant, and we find

P(Ow)~v A1, 0<v<l, (14)
where the exponern®(r) depends om according to
) Y(B-2)
r={25ir{(2,8+1)g ] (15

For largev the second term of the kernel is dominant. Mak-
ing use of (F,(1:2,2:2)~inY%z V4exp(2?) for large
positive z, we find

P(Op)~ exd —vv(r)®], v>1, (16)
where the characteristic velocity,,(r) is given by
. o’
V)= (17)

As r decreases, the boundary collisions become more in-
elastic. The probability of finding the particle near the

Here the integration variable in the second integral has beepoundary with a small velocity increases. This is reflected in

changed frony to 1—vy, using

dP(y,00  dP(1-y,0)
w v '

(10

which follows from Eq.(4).

Next we eliminatedP(y,0)/dv from Eq. (9) using Egs.
(7),(8) and integrate ovey with the help of[6]. This yields
an integral equation for the function

g(z2)=v Y?P(0p), z=0v%9 (12)

given by
g(rSZ): 1 fmdzref(z+z’)
2mr>2)o
X +61F2(1;§,%;ZZ’)]Q(Z,), (12)
z+Z7

where ;F,(a;b,c;z) is a generalized hypergeometric func-
tion [6,7]. The key step in calculatin@(x,v) is solving in-
tegral equation(12) for g(z). Onceg(z) has been deter-
mined, P(0p) follows from Eq.(11) and P(x,v) from the
integrals in Eqs(6)—(8).

In the case =1 of elastic boundary collisions, E¢12)
has the solutiong(z)=constxz ¢ implying P(0v)
= const and, from Eq€$6)—(8), P(x,v) =const. ThisP(x,v)
clearly satisfies the Fokker-Planck equati{@n with bound-
ary conditiong4) and(5). SinceP(x,v) is independent of,
the equilibrium average of the kinetic energy is infinite. Ac-

the monotonic increase g#(r) with decreasing and the
monotonic decrease ofy(r), apparent from Eqg15),(17).
As r decreases from 1 to ®(r) increases from 0 t§. The
integral equatior{12) for P(Op) has a well defined solution
for 0<pB<3. However, forB greater than the critical value
B.=2, the two integrals in Eq6) diverge. Thus our solu-
tion to the Fokker-Planck equation breaks down for 8.
or r<r.. From Eq.(15) one sees thgB.=2 corresponds to
the critical valuer ,=e~ ™3, This is the same as the critical
value (2) for the inelastic collapse transition found by Cor-
nell, Swift, and Bray[1]

To solve integral equatiofil2) for g(z), we remove the
leading singularity az=0 by introducing the function

f(z)=z%%g(r3z), a=%(23+1). (18

The corresponding integral equation fbfz) can then be
written as

rU2 ro 5
f(z)=1+5=| dz’z/ e ()2
2 0
X[K(z,z')—K(1z")]f(z"), (19
with the kernel
K(z,z’):z“{ 3 +6,F,(1:2,Z:r%27)|. (20
z+r°z
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FIG. 2. Schematic trajectory of the simulated particle. The par-
ticle travels with constant velocity between kicks, except when it
strikes the boundary and is reflected inelastically. Our simulations
were performed with gentle kicks to approximate the continuous
0.3 dynamics, and the corresponding trajectories are much smoother
1 than shown.

P(x,v)

0.5 The functionsP(0) for v<0 andv>0 are also directly
related by the inelastic boundary conditi@®). The points

for P(Ov), v<0 denoted by empty circles in Fig. 1 were
obtained by substituting the points f&(0v), v>0 shown

in the figure into Eq(5). That the points folP(0v), v<0

3 2 1 0 1 2 3 obtained this way lie right on the corresponding solid curve,
as they should, serves as an important check of our numeri-
cal work.

FIG. 1. The functiorP(x,v) (solid lineg for r=  obtained by As r decreasesP(x,v) becomes more strongly peaked
solving the integral equatiofi2) for P(0p), v>0 and integrating around the most probable values )= (0,0),(1,0), where
Egs. (6)—(8) numerically, making use of reflection symmet#). P(x,v) diverges. According to our numerical results for
As discussed in the text, the points shown by empty circles confirmP(X,v), the probability of finding the particle at a distance
that the numerical results fé?(x,v) do indeed satisfy the inelastic less than 0.1 from the boundary, independent of its velocity,
boundary conditiorn(5). increases from about 32% for=0.8 to 84% forr=0.2.

<

Heref(z) has been normalized so thigtl)=1 by introduc-
ing a subtracted kernel. This permits solution by iteration,
which would not work for the original homogeneous integral We have also carried out computer simulations of a ran-
equation. The boundary velocity distributidd(0,v), ob-  domly accelerated particle making inelastic boundary colli-
tained from the numerical solution of integral equatid®) sions. The particle moves on the line<@<1 and receives
and Eqs(11) and(18), is compared with results from simu- random kicks at time$=0,7,27,37, ..., resulting in dis-
lations in the next section. continuous velocity changes. Between two consecutive kicks

OnceP(0p) is known, P(x,v) follows, for positivev, the particle moves with constant velocity except when it
from integration according to Eq§6)—(8) and, for negative strikes the boundary. In this case it is reflected, with its ve-
v, from reflection symmetry4). Forr.<r<1, P(x,v) isa locity multiplied by —r. A sample trajectory is shown in
nonsingular function of X,v) except at the two boundary Fig. 2. Denoting the position of the particle as #ih kick is
points (0,0) and (1,0). On approaching these points at corapplied byx, and the velocitjust beforethe kth kick by v,
stantx=0 or 1, P(x,v) diverges asA|v| #(), as in Egs. we write the corresponding equation of motion as
(14),(15), with different amplitudes\ for positive and nega-
tive v, consistent with the inelastic boundary conditi). U=Ur-1t E—1, (21
On approaching the singular points at constant0, P(x,v)
diverges asx A0 for x—0 and as (+x) #(0"3 for x
—1, as follows from Eqs(6)—(8).

Carrying out the integrals in Eq&)—(8) numerically for
r=3, we obtain the functiorP(x,v) shown in Fig. 1. The
divergence ab =0 and the asymmetry betweenand —v,
due to the asymmetric inelastic boundary condit{ép are
apparent on the curve for=0 in Fig. 1. On the curves for

IIl. COMPUTER SIMULATIONS

Xk:Xk,l'i‘UkT, (22)

if the particle does not strike the boundary between kicks
—1 andk, i.e., if 0<xy_;+uv,7<<1. Otherwise these equa-
tions are replaced by

x=0.1, 0.3, and 0.5 the divergence is replaced by a rounded vk= =M (Uk-1F k-1), (23
peak. The peak becomes broader and more symmetrc as

increases. The asymmetry disappearg=a0.5, as required I Xg—1tuiT, Xk—1TvK7<0,

by reflection symmetry4). Xe=1 (14+1) =Xy Foer, X i Foer>1. (24

The solid curve folP(0p), v<0 in Fig. 1 was obtained
from our numerical solution of the integral equatid®) for
P(0v), v>0 by integrating Eqs(6)—(8) numerically to ob-  The velocity changé, is selected randomly from a Gaussian
tain P(1,v), v>0 and then using reflection symmetf).  distribution, with (& )=278 . For this distribution
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3(v2)=3v2+kr for r=1, analogous to Eq13). Note that 8
the root-mean-square velocity change is given Ky,
— <§§> 1/2__ (27_) 1/2.

The difference equation&1)—(24) provide a good ap-
proximation to the differential equatiqi) when the relative
velocity change per kick is small, i.e., f&vv,,¢<|v|. The
simulations described below were performed wikly g
=(27)?=0.004 orr=8x10"6.

Assuming the equivalence of ensemble averages ant
long-time averages for a single system, one may estimate
P(x,v) and P(Op) from a single simulation with a large
number of step& using the relations

4

In P(O,v)

N7
P(X,0) = NiJ dt S(x—x(1)8w—o(t)), (25 In{v/ven)
0 FIG. 3. The boundary probability distributioR(Op) for r
1 (A =0.2 (solid line) andr =0.8 (dashed ling obtained by solving the
P(0p)= lim _f dx P(x,v) integral equation(12) numerically. Simulation results for=0.2
AHOA 0 (filled circles andr =0.8 (empty circle$. The error bars are com-
parable to the sizes of the circles, except for the highest and lowest

. 1 N7 velocities, where the error bars are about twice as large. The char-
_AIITON A fo dt oA —x(1)o—-v(t), 20  ,cteristic velocityy .,(r) is defined in Eq(17).
where ¢ denotes the standard step function. The distribution The simulation data and the Fokker-Planck results for
function P(x,v) in Eq. (25) is normalized so that P(Ov) in Fig. 3 are in excellent agreement. Note that the
data extend over nearly six decades in the natural varigble
1 o of Eq. (16).
j dxf dv P(x,v)=1. (27)
0 —®

IV. CONCLUDING REMARKS

Referring to Fig. 2, consider the contribution of the zigzag .
trajectory fromx,_, to X, 1 to P(0p) in Eq. (26). Only the W.e have §hqwn'how the Fokker-Planck equatlon for’the
middle interval, which contains a boundary collision, gives aeqwll_brlum d|str|but|onP(x,v.) can be solvgd with a Gregn S
nonvanishing  contribution, N7) o] X 8(v+r Lv)) function approach. To obtaiR(x,v), we first §olve the in-
+6(v—uvy)], in the limit A—0. Note that this contribution ftegral equation(12) for P(0) and then SUPSt'tUte the re§ult
explicitly satisfies the inelastic boundary conditi(s). |n.Eqs.(6)_—(8). A gfaph. of P(x,v) for =z, calculated in

In our simulations?(0,v) was determined by iterating the this way, 1S shown in Flg. L. , :
difference equationdl= 10 times and summing the contri- _AS dls_cussed following Eq17), the Green's functllon S0
butions (see the preceding paragrapdf all the boundary lution exists foff.>fc but not forr.<rc, vyhererc is the
collisions. In practice, this involves sorting all the velocities Same as the critical valu@) for the inelastic-collapse tran-
v, just after boundary collisions in bins=1,2, . . . ofwidth sition reported by Cornebt al.[1,2]. Forr.<r<1 the most
Av and calculating the numbet,, average(v),, and av-  Probable values ofxv) are (0,0) and (1,0), wher(x,v)
erage inversdv 1), of the velocities in bina. The data is infinite. Asr approaches. from above, the expone(r)

points in Fig. 3 show the contributior®, (v}, of the vari- 11 the asymptotic form14),(15) of P(0w) for smallv ap-
ous bins. where e proaches 2 from below, and the first and second terms on the

right-hand side of Eq(6), which with Eqs.(7),(8) determine
N (v, P(x,v), diverge positively and negatively, respectively.
PQ=W. (28)  However, the divergences cancel, aR¢k,v) remains nor-
malizable and extended, as opposed to a collapsed delta-
; ; ; ; ; function distribution, ar=r..
HereP, in EqQ. (28) is normalized consistently witR(x, ! _' c _ o
in Eq. (“27). a- (29 y (x.0) Finally we consider the critical behavior of the incident

The results of our simulations are shown in Fig. 3 for and reflected probability currents

=0.2 (filled circles andr=0.8 (empty circle$. The error 0 .

bars are comparable to the size of the points, except for the |mc=J dv vP(0p), |ref=f dvvP(0p). (29
highest and lowest velocities, where the error bars are about — 0

twice as large. The solid and dashed curves in Fig. 3 show

the functionP(0p) for r=0.2 andr =0.8 obtained by solv- Note that these definitions and the inelastic boundary condi-
ing integral equatior{12) numerically, as discussed follow- tion (5) imply total currentl,.+1,.~=0, as required for any
ing Eq. (20). The normalization of the curves, which is not time-independent distribution. The reflected current is ex-
fixed by the integral equation, has been chosen so that thectly the same as the boundary collision rate. Substituting the
data points and curves coincide atdfi(,)=—1. The faint smallv behavior (14),(15) of P(0p) in Egs. (29 with
straight lines show the power la@4),(15) for smallv. B(r)—2 asr—r. and using the normalizability &?(x,v) at
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r., we find that the equilibrium boundary collision rate di-

verges as(—r.) ! asr approaches. from above. Atr

=r. the particle makes an infinite number of collisions with
the boundary in a finite time. In their work on inelastic col-

lapse, Cornelkt al.[1,2] reached a similar conclusion for
<rg.
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APPENDIX A: DERIVATION OF EQ. (6)

We begin by extending the finite intervak(x<1 to the
half line 0<x<e and introducing the Laplace transform

Q(s,v)= f:dx e P(x,v), (A1)
which according to Eq(3) satisfies
82
SU—W)Q(S,U)ZUP(O,U). (A2)
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Ai'(0)=-3"1Bi'(0)=-3"1r(3) 1,

£ Ys YA (sY3)} = (2x 3Y67) —1X—2lse—v3/9x,

(A5)
£ Ys™"Ai(s ) Ai(sMu)}

:(ZX33/277)71X71(Uu)1/ge,(v3+u3)lgx
2(vu)®? 2(vu)3?

X |1/3<—(I;X )— 1/3<—(I;X ” (AB)

£~ Ys™3ai(sY3)Bi(s?u)}
= (6m) X Hvu) L @I

2(vu)®? 2(pu)3?2

X '1/3<—(09l:() )+I1/3< (vgl:() ” (A7)

Equations(A5)—(A7) follow from the substitution$5]

21/2 2 2

Ai(Z)Z? |1/3(523/2)—|1/3(523/2) : (A8)
z\V 2 2

Bi(z)=(§) 2[|_1,3<§z3’2 +1y3 §z3/2) . (A9)

This differential equation can be solved in terms of standard

Airy functions Ai(z),Bi(z), [5], with Wronskian
Ai(z)Bi’(z)—Ai’'(2)Bi(z)= 1. The solution for positive
that vanishes as— o is given by

Q(s,v)=W(s)Ai(s¥%)

+ s 13 Bi(Sllsv)f duAi(sllaU)UP(o’U)
v

+Ai(sl’3v)fvdu Bi(s®3u)uP(0u)|.  (A3)
0

The quantityW(s) in Eq. (A3) is an arbitrary weight
function. It can be expressed in terms @Q(s,0)/dv by
differentiating Eq.(A3) with respect tov and then setting
v=0. Substituting the resulting expression #i(s) in Eq.
(A3) yields

Q(s,v)=s13 — wBi’(0)

Ai(sY%) [ 9Q(s,0)
Ai’(0) dv

X qu Ai(sY3u)uP(0)
0

413 Bi(s”%)f duAi(s"u)uP(0u)

+Ai(s1’3v)fudu Bi(sYu)uP(Ou)|.  (Ad)
0

Next we evaluate the inverse Laplace transform of Eq.

(A4), using £ YQ(s,v)}=P(x,v), the Faltung theorem
[9], and the relations

on the left-hand sides of Eq6A5)—(A7) and Ref[10]. The
inverse Laplace transform of E¢A4) is the Green’s func-
tion solution(6) that we set out to prove.

APPENDIX B: DERIVATION OF EQS. (7) AND (8)

In the limit v —0 Eg. (6) reduces to

P(x,0)=

1 o 3
x*2’3f duue V"’ pPou
31'3r<%>{ : ou

fx dy JP(y,0)
0(x=y)*®

where the forml ,(x)~I'(v+1)~1(z/2)” for small z has
been used. From reflection symmetty), P(x,0)—P(1

—x,0)=0. Substituting Eq(B1) in this relation and using
Eq. (10), we obtain

: (B1)

fl dy dP(y,0)
o[x—y[*#® v
s efu?’/gx efu3/9(lfx)
=f0 duu NTE — (1—x02 P(O,). (B2)

To solve integral equatio(B2) for the unknown function
on the left-hand side, it is useful to consider the related in-
tegral equation

1 R(y,u)
d =F(x,u).
fO y|X_y|2/3 ( )

(B3)
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Making the replacements—1—x andy—1—y, one sees nel into two Volterra adjoint operators and has the solution

that any solution of Eq(B3) also satisfies [4,11]
1 R(y,U)_R(l_y,U) 1 -1 5 -2 d

dy =F(x,u)=F(1-x,u) _ _a-1p| T 2l L —we S

fo x—y|22 R(x,u)=—3"1T 3] Tl X "5
(B4)

. : 1 y¥® o d vy F(z,u)
Comparing Egs.(B2) and (B4), recalling Eg.(10), and XJ dy ——— _J dz———"""
choosing x (y-x)¥edylo zMy—z)1e

F(X u):X72/3e7u3/9x (BS) (86)
we see thatB2) has the solutiort7) in terms ofR(x,u). Substituting Eq{(B5) into (B6) and evaluating the integrals

Integral equatioriB3) can be solved by factoring the ker- with the help of[6], we obtain Eq(8) for R(x,u).
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